CoderFunda
  • Home
  • About us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • About us
  • Home
  • Php
  • HTML
  • CSS
  • JavaScript
    • JavaScript
    • Jquery
    • JqueryUI
    • Stock
  • SQL
  • Vue.Js
  • Python
  • Wordpress
  • C++
    • C++
    • C
  • Laravel
    • Laravel
      • Overview
      • Namespaces
      • Middleware
      • Routing
      • Configuration
      • Application Structure
      • Installation
    • Overview
  • DBMS
    • DBMS
      • PL/SQL
      • SQLite
      • MongoDB
      • Cassandra
      • MySQL
      • Oracle
      • CouchDB
      • Neo4j
      • DB2
      • Quiz
    • Overview
  • Entertainment
    • TV Series Update
    • Movie Review
    • Movie Review
  • More
    • Vue. Js
    • Php Question
    • Php Interview Question
    • Laravel Interview Question
    • SQL Interview Question
    • IAS Interview Question
    • PCS Interview Question
    • Technology
    • Other

03 June, 2024

Pytorch - sending dataset to cuda breaks the dataloader iterator - TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu()

 Programing Coderfunda     June 03, 2024     No comments   

I am trying to speed up my pytorch training by following the advice from here:



https://discuss.pytorch.org/t/cpu-faster-than-gpu/25343/12 />

So now, I am sending my trainingdata.data and .targets to cuda before starting training. What I am confused about it how to then use the Dataloader made off of the trainingdata in my train function, as when I try the way I had before (when I was sending individual batches to cuda), I get this error on the iterator of the dataloader:
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.



It is erroring on the following line (loader is the dataloader here):
for data, target in loader:



What am I doing wrong? How can I still use the dataloader while also sending the full dataset over to the gpu?


Python version is 3.12, pytorch is 2.3.0+cu121


Also, the error is the same if I dont include the pin_memory var to the dataloader


Full error trace:
Traceback (most recent call last):
File "C:\Program Files\JetBrains\PyCharm Community Edition 2024.1.2\plugins\python-ce\helpers\pydev\pydevd.py", line 1537, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Program Files\JetBrains\PyCharm Community Edition 2024.1.2\plugins\python-ce\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "C:\Users\me\PycharmProjects\NueralNetTests\TorchTests.py", line 181, in
main()
File "C:\Users\me\PycharmProjects\NueralNetTests\TorchTests.py", line 169, in main
train(epoch, model, loaders, device, optimizer, lossFN)
File "C:\Users\me\PycharmProjects\NueralNetTests\TorchTests.py", line 41, in train
for data, target in loaders['train']:
File "C:\Users\me\PycharmProjects\NueralNetTests\venv\Lib\site-packages\torch\utils\data\dataloader.py", line 631, in __next__
data = self._next_data()
^^^^^^^^^^^^^^^^^
File "C:\Users\me\PycharmProjects\NueralNetTests\venv\Lib\site-packages\torch\utils\data\dataloader.py", line 675, in _next_data
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\me\PycharmProjects\NueralNetTests\venv\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
~~~~~~~~~~~~^^^^^
File "C:\Users\me\PycharmProjects\NueralNetTests\venv\Lib\site-packages\torchvision\datasets\mnist.py", line 143, in __getitem__
img = Image.fromarray(img.numpy(), mode="L")
^^^^^^^^^^^
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.



and The code:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

_transform = Compose([
lambda img: rotate(img, -90),
lambda img: hflip(img),
ToTensor()
])

trainData = datasets.EMNIST(
root='data',
train=True,
transform=_transform,
download=True,
split='letters'
)
testData = datasets.EMNIST(
root='data',
train=False,
transform=_transform,
download=True,
split='letters'
)

trainLoader = DataLoader(trainData,
batch_size=100,
shuffle=True,
pin_memory=True
)

testLoader = DataLoader(testData,
batch_size=100,
shuffle=True,
pin_memory=True
)

trainData.data = trainData.data.to(device)
trainData.targets = trainData.targets.to(device)
testData.data = testData.data.to(device)
testData.targets = testData.targets.to(device)

model = CNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
lossFN = nn.CrossEntropyLoss()

for epoch in range(1, 2):
train(model, trainLoader, device, optimizer, lossFN)
test(model, testLoader, device, lossFN)

def train(model, loader, device, optimizer, lossFN):
model.train()
for data, target in loader:
optimizer.zero_grad()
output = model(data)
loss = lossFN(output, target)
loss.backward()
optimizer.step()

class CNN(nn.Module):

def __init__(self):
super(CNN, self).__init__()

self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2Drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 27)

def forward(self, x):
x = F.leaky_relu(F.max_pool2d(self.conv1(x), 2))
x = F.leaky_relu(F.max_pool2d(self.conv2Drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.leaky_relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)

return F.softmax(x)
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg
Email ThisBlogThis!Share to XShare to Facebook

Related Posts:

  • My first Laravel package - Translation checker for LaravelHey everyone! I have created my first Laravel package, Translation Checker! It's designed to simplify the process of managing translations in your l… Read More
  • Validate Console Command Input With the Command Validator Package--- The Command Validator package by Andrea Marco Sartori makes validating the input of console commands a cinch using Laravel's beloved Validato… Read More
  • window.location.replace() is not workingjust wanna ask why does window.location.replace is not working in my page. I've been working on it for weeks. It works fine on my other pages, althoug… Read More
  • using type parameters in generic constraints in TypeScriptI have the following ts code in many places: (note here's a typescript playground with the example) let filtered = items.filter(item = item.title.t… Read More
  • Windows 10 Intellij 2024.2.1 Spring boot WebFlux Unit test failed normally it's work fine. I have a exit code -1@ExtendWith(MockitoExtension.class) class XXXXXXXTest { private YYYYRule rule; @Mock private ZZZZService zzzzService; @BeforeEach void setUp() { ru… Read More
Newer Post Older Post Home

0 comments:

Post a Comment

Thanks

Meta

Popular Posts

  • Failed to install 'cordova-plugin-firebase': CordovaError: Uh oh
    I had follow these steps to install an configure firebase to my cordova project for cloud messaging. https://medium.com/@felipepucinelli/how...
  • Spring boot app (error: method getFirst()) failed to run at local machine, but can run on server
    The Spring boot app can run on the online server. Now, we want to replicate the same app at the local machine but the Spring boot jar file f...
  • Log activity in a Laravel app with Spatie/Laravel-Activitylog
      Requirements This package needs PHP 8.1+ and Laravel 9.0 or higher. The latest version of this package needs PHP 8.2+ and Laravel 8 or hig...
  • Step-by-step guide to linking gnuplot to Octave within Virtual Studio Code (VSC)
    I am aware of a number of previous questions (here, here and here for example) pointing out to the need to modify a file named .octaverc. ...
  • SQL Tutorial
    SQL Tutorial SQL HOME SQL Intro SQL Syntax SQL Select SQL Select Distinct SQL Where SQL And, Or, Not SQL Order By SQL Insert Into SQL Null V...

Categories

  • Ajax (26)
  • Bootstrap (30)
  • DBMS (42)
  • HTML (12)
  • HTML5 (45)
  • JavaScript (10)
  • Jquery (34)
  • Jquery UI (2)
  • JqueryUI (32)
  • Laravel (1017)
  • Laravel Tutorials (23)
  • Laravel-Question (6)
  • Magento (9)
  • Magento 2 (95)
  • MariaDB (1)
  • MySql Tutorial (2)
  • PHP-Interview-Questions (3)
  • Php Question (13)
  • Python (36)
  • RDBMS (13)
  • SQL Tutorial (79)
  • Vue.js Tutorial (68)
  • Wordpress (150)
  • Wordpress Theme (3)
  • codeigniter (108)
  • oops (4)
  • php (853)

Social Media Links

  • Follow on Twitter
  • Like on Facebook
  • Subscribe on Youtube
  • Follow on Instagram

Pages

  • Home
  • Contact Us
  • Privacy Policy
  • About us

Blog Archive

  • September (100)
  • August (50)
  • July (56)
  • June (46)
  • May (59)
  • April (50)
  • March (60)
  • February (42)
  • January (53)
  • December (58)
  • November (61)
  • October (39)
  • September (36)
  • August (36)
  • July (34)
  • June (34)
  • May (36)
  • April (29)
  • March (82)
  • February (1)
  • January (8)
  • December (14)
  • November (41)
  • October (13)
  • September (5)
  • August (48)
  • July (9)
  • June (6)
  • May (119)
  • April (259)
  • March (122)
  • February (368)
  • January (33)
  • October (2)
  • July (11)
  • June (29)
  • May (25)
  • April (168)
  • March (93)
  • February (60)
  • January (28)
  • December (195)
  • November (24)
  • October (40)
  • September (55)
  • August (6)
  • July (48)
  • May (2)
  • January (2)
  • July (6)
  • June (6)
  • February (17)
  • January (69)
  • December (122)
  • November (56)
  • October (92)
  • September (76)
  • August (6)

  • Failed to install 'cordova-plugin-firebase': CordovaError: Uh oh - 9/21/2024
  • pyspark XPath Query Returns Lists Omitting Missing Values Instead of Including None - 9/20/2024
  • SQL REPL from within Python/Sqlalchemy/Psychopg2 - 9/20/2024
  • MySql Explain with Tobias Petry - 9/20/2024
  • How to combine information from different devices into one common abstract virtual disk? [closed] - 9/20/2024

Laravel News

  • Track Metrics Effortlessly with Laravel's Context Increment and Decrement Methods - 5/4/2025
  • NativePHP Hit $100K — And We're Just Getting Started 🚀 - 5/8/2025
  • Name Queued Closures in Laravel 12.13 - 5/9/2025
  • Simplify HasManyThrough Relationships with Laravel's CanBeOneOfMany Support - 5/4/2025
  • Using Database Comments to Track Columns With Sensitive Data - 5/7/2025

Copyright © 2025 CoderFunda | Powered by Blogger
Design by Coderfunda | Blogger Theme by Coderfunda | Distributed By Coderfunda